Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Public Health ; 10: 1038017, 2022.
Article in English | MEDLINE | ID: covidwho-2109888

ABSTRACT

COVID-19, referred to as new coronary pneumonia, is an acute infectious disease caused by a new type of coronavirus SARS-CoV-2. To evaluate the effect of integrated Chinese medicine and Western medicine in patients with COVID-19 from overseas. Data were collected from 178 COVID-19 patients overseas at First Affiliated Hospital of Xiamen University from April 1, 2021 to July 31, 2021. These patients received therapy of integrated Chinese medicine and western medicine. Demographic data and clinical characteristics were extracted and analyzed. In addition, the prescription which induced less length of PCR positive days and hospitalization days than the median value was obtained. The top 4 frequently used Chinese medicine and virus-related genes were analyzed by network pharmacology and bioinformatics analysis. According to the chest computed tomography (CT) measurement, abnormal lung findings were observed in 145 subjects. The median length of positive PCR/hospitalization days was 7/7 days for asymptomatic subjects, 14/24 days for mild subjects, 10/15 days for moderate subjects, and 14/20 days for severe subjects. The most frequently used Chinese medicine were Scutellaria baicalensis (Huangqin), Glycyrrhiza uralensis (Gancao), Bupleurum chinense (Chaihu), and Pinellia ternata (Banxia). The putative active ingredients were baicalin, stigmasterol, sigmoidin-B, cubebin, and troxerutin. ACE, SARS-CoV-2 3CL, SARS-CoV-2 Spike, SARS-CoV-2 ORF7a, and caspase-6 showed good binding properties to active ingredients. In conclusion, the clinical results showed that integrated Chinese medicine and Western medicine are effective in treating COVID-19 patients from overseas. Based on the clinical outcomes, the putative ingredients from Chinese medicine and the potential targets of SARS-CoV-2 were provided, which could provide a reference for the clinical application of Chinese medicine in treating COVID-19 worldwide.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Retrospective Studies , Medicine, Chinese Traditional , Hospitalization
2.
Proc Natl Acad Sci U S A ; 119(34): e2207841119, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-1991768

ABSTRACT

The targeted delivery of messenger RNA (mRNA) to desired organs remains a great challenge for in vivo applications of mRNA technology. For mRNA vaccines, the targeted delivery to the lymph node (LN) is predicted to reduce side effects and increase the immune response. In this study, we explored an endogenously LN-targeting lipid nanoparticle (LNP) without the modification of any active targeting ligands for developing an mRNA cancer vaccine. The LNP named 113-O12B showed increased and specific expression in the LN compared with LNP formulated with ALC-0315, a synthetic lipid used in the COVID-19 vaccine Comirnaty. The targeted delivery of mRNA to the LN increased the CD8+ T cell response to the encoded full-length ovalbumin (OVA) model antigen. As a result, the protective and therapeutic effect of the OVA-encoding mRNA vaccine on the OVA-antigen-bearing B16F10 melanoma model was also improved. Moreover, 113-O12B encapsulated with TRP-2 peptide (TRP2180-188)-encoding mRNA also exhibited excellent tumor inhibition, with the complete response of 40% in the regular B16F10 tumor model when combined with anti-programmed death-1 (PD-1) therapy, revealing broad application of 113-O12B from protein to peptide antigens. All the treated mice showed long-term immune memory, hindering the occurrence of tumor metastatic nodules in the lung in the rechallenging experiments that followed. The enhanced antitumor efficacy of the LN-targeting LNP system shows great potential as a universal platform for the next generation of mRNA vaccines.


Subject(s)
Cancer Vaccines , Nanoparticles , Neoplasms , mRNA Vaccines , Amino Alcohols , Animals , Antigens/metabolism , CD8-Positive T-Lymphocytes , Cancer Vaccines/therapeutic use , Decanoates , Immunologic Memory , Liposomes , Lymph Nodes , Mice , Neoplasm Metastasis/prevention & control , Neoplasms/therapy , Ovalbumin , mRNA Vaccines/therapeutic use
3.
Front Pharmacol ; 12: 719758, 2021.
Article in English | MEDLINE | ID: covidwho-1572318

ABSTRACT

The current Coronavirus disease 2019 (COVID-19) pandemic has become a global challenge, and although vaccines have been developed, it is expected that mild to moderate patients will control their symptoms, especially in developing countries. Licorice, not only a food additive, but also a common traditional Chinese herbal medicine, which has several pharmacological effects, such as anti-inflammation, detoxification, antibacterial, antitussive, and immunomodulatory effects, especially in respiratory diseases. Since the outbreak of COVID-19, glycyrrhizin, glycyrrhizin diamine and glycyrrhizin extract have been widely studied and used in COVID-19 clinical trials. Therefore, it is a very interesting topic to explore the material basis, pharmacological characteristics and molecular mechanism of licorice in adjuvant treatment of COVID-19. In this paper, the material basis of licorice for the prevention and treatment of COVID-19 is deeply analyzed, and there are significant differences among different components in different pharmacological mechanisms. Glycyrrhizin and glycyrrhetinic acid inhibit the synthesis of inflammatory factors and inflammatory mediators by blocking the binding of ACE 2 to virus spike protein, and exert antiviral and antibacterial effects. Immune cells are stimulated by multiple targets and pathways to interfere with the pathogenesis of COVID-19. Liquiritin can prevent and cure COVID-19 by simulating type I interferon. It is suggested that licorice can exert its therapeutic advantage through multi-components and multi-targets. To sum up, licorice has the potential to adjuvant prevent and treat COVID-19. It not only plays a significant role in anti-inflammation and anti-ACE-2, but also significantly improves the clinical symptoms of fever, dry cough and shortness of breath, suggesting that licorice is expected to be a candidate drug for adjuvant treatment of patients with early / mild COVID-19.

4.
Acc Chem Res ; 54(21): 4001-4011, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1475239

ABSTRACT

Since the U.S. Food and Drug Administration (FDA) granted emergency use authorization for two mRNA vaccines against SARS-CoV-2, mRNA-based technology has attracted broad attention from the scientific community to investors. When delivered intracellularly, mRNA has the ability to produce various therapeutic proteins, enabling the treatment of a variety of illnesses, including but not limited to infectious diseases, cancers, and genetic diseases. Accordingly, mRNA holds significant therapeutic potential and provides a promising means to target historically hard-to-treat diseases. Current clinical efforts harnessing mRNA-based technology are focused on vaccination, cancer immunotherapy, protein replacement therapy, and genome editing. The clinical translation of mRNA-based technology has been made possible by leveraging nanoparticle delivery methods. However, the application of mRNA for therapeutic purposes is still challenged by the need for specific, efficient, and safe delivery systems.This Account highlights key advances in designing and developing combinatorial synthetic lipid nanoparticles (LNPs) with distinct chemical structures and properties for in vitro and in vivo intracellular mRNA delivery. LNPs represent the most advanced nonviral nanoparticle delivery systems that have been extensively investigated for nucleic acid delivery. The aforementioned COVID-19 mRNA vaccines and one LNP-based small interfering RNA (siRNA) drug (ONPATTRO) have received clinical approval from the FDA, highlighting the success of synthetic ionizable lipids for in vivo nucleic acid delivery. In this Account, we first summarize the research efforts from our group on the development of bioreducible and biodegradable LNPs by leveraging the combinatorial chemistry strategy, such as the Michael addition reaction, which allows us to easily generate a large set of lipidoids with diverse chemical structures. Next, we discuss the utilization of a library screening strategy to identify optimal LNPs for targeted mRNA delivery and showcase the applications of the optimized LNPs in cell engineering and genome editing. Finally, we outline key challenges to the clinical translation of mRNA-based therapies and propose an outlook for future directions of the chemical design and optimization of LNPs to improve the safety and specificity of mRNA drugs. We hope this Account provides insight into the rational design of LNPs for facilitating the development of mRNA therapeutics, a transformative technology that promises to revolutionize future medicine.


Subject(s)
COVID-19 Vaccines/pharmacology , Gene Editing , Gene Transfer Techniques , Lipids/chemistry , Nanoparticles/chemistry , RNA, Messenger/pharmacology , COVID-19 Vaccines/chemistry , Genetic Therapy , Humans , RNA, Messenger/chemistry , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
5.
Pathogens ; 10(6)2021 Jun 11.
Article in English | MEDLINE | ID: covidwho-1270096

ABSTRACT

Through 4 June 2021, COVID-19 has caused over 172.84 million cases of infection and 3.71 million deaths worldwide. Due to its rapid dissemination and high mutation rate, it is essential to develop a vaccine harboring multiple epitopes and efficacious against multiple variants to prevent the immune escape of SARS-CoV-2. An in silico approach based on the viral genome was applied to identify 19 high-immunogenic B-cell epitopes and 499 human leukocyte antigen (HLA)-restricted T-cell epitopes. Thirty multi-epitope peptide vaccines were designed by iNeo-Suite and manufactured by solid-phase synthesis. Docking analysis confirmed stable hydrogen bonds of epitopes with their corresponding HLA alleles. When four peptide candidates derived from the spike protein of SARS-CoV-2 were selected to immunize mice, a significantly larger amount of total IgG in serum, as well as an increase of CD19+ cells in the inguinal lymph nodes, were observed in the peptide-immunized mice compared to the control. The ratios of IFN-γ-secreting lymphocytes in CD4+ or CD8+ T-cells in the peptide-immunized mice were higher than those in the control mice. There were also a larger number of IFN-γ-secreting T-cells in the spleens of peptide-immunized mice. The peptide vaccines in this study successfully elicited antigen-specific humoral and cellular immune responses in mice. To further validate the safety and efficacy of this vaccine, animal studies using a primate model, as well as clinical trials in humans, are required.

6.
Biomed Pharmacother ; 139: 111561, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1174103

ABSTRACT

Heparin is the earliest and most widely used anticoagulant and antithrombotic drug that is still used in a variety of clinical indications. Since it was discovered in 1916, after more than a century of repeated exploration, heparin has not been replaced by other drugs, but a great progress has been made in its basic research and clinical application. Besides anticoagulant and antithrombotic effects, heparin also has antitumor, anti-inflammatory, antiviral, and other pharmacological activities. It is widely used clinically in cardiovascular and cerebrovascular diseases, lung diseases, kidney diseases, cancer, etc., as the first anticoagulant medicine in COVID-19 exerts anticoagulant, anti-inflammatory and antiviral effects. At the same time, however, it also leads to a lot of adverse reactions, such as bleeding, thrombocytopenia, elevated transaminase, allergic reactions, and others. This article comprehensively reviews the modern research progress of heparin compounds; discusses the structure, preparation, and adverse reactions of heparin; emphasizes the pharmacological activity and clinical application of heparin; reveals the possible mechanism of the therapeutic effect of heparin in related clinical applications; provides evidence support for the clinical application of heparin; and hints on the significance of exploring the wider application fields of heparin.


Subject(s)
Anticoagulants/pharmacology , Anticoagulants/therapeutic use , Drugs, Essential , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Heparin/pharmacology , Heparin/therapeutic use , Animals , Cardiovascular Diseases/drug therapy , Cerebrovascular Disorders/drug therapy , Humans , Kidney Diseases/drug therapy , Lung Injury/drug therapy , COVID-19 Drug Treatment
7.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 42(4): 521-530, 2020 Aug 30.
Article in Chinese | MEDLINE | ID: covidwho-749147

ABSTRACT

Objective To explore the optimal therapy time for the treatment of severe coronavirus disease 2019(COVID-19)by traditional Chinese medicine(TCM)and its influence on the therapeutic effect and prognosis. Methods The clinical data,laboratory findings,and outcomes of 64 patients with severe COVID-19 treated with TCM and western medicine in Chongqing from January 20,2020, to March 11,2020 were retrospectively analyzed.Patients were divided into early intervention group[TCM was initiated within 3 days (including day 3) after the first diagnosis of severe type/critical type COVID-19]and late intervention group[TCM was initiated after 7 days (including day 7) after the first diagnosis of severe type /critical type COVID-19].The changes in clinical parameters during the course of disease were compared between the two groups. Results On day 14,the oxygenation index was 292.5(252.0,351.0)mmHg in the early intervention group,which was significantly higher than that in the late intervention group [246.0(170.0,292.5)mmHg](P=0.005).The length of hospital stay [(18.56±1.11)d vs.(24.87±1.64)d,P=0.001],duration of ICU stay [(14.12±0.91)d vs.(20.00±1.53)d,P=0.000] and time to negativity [(16.77±1.04)d vs.(22.48±1.66)d,P=0.001] in the early intervention group were significantly shorter than those in the late intervention group.The intubation rate(7.3%)in the early intervention group was significantly lower than that in the late intervention group(30.4%)(P=0.028). Conclusion Early TCM therapy within three days after a diagnosis of severe COVID-19 can shorten the length of hospital stay,duration of ICU stay,and time to negativity and decrease intubation rate.


Subject(s)
Betacoronavirus , Coronavirus Infections , Medicine, Chinese Traditional , Pandemics , Pneumonia, Viral , COVID-19 , Coronavirus Infections/drug therapy , Humans , Pneumonia, Viral/drug therapy , Prognosis , Retrospective Studies , SARS-CoV-2 , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL